Pediatric Fractures & Case Study

Dr. Joseph P. McCormick
AMG Orthopedic Surgeon
Overview

• Unique pediatric traits in fractures
 – Salter-Harris classification in physeal fractures
• Wrist injuries
• Elbow fractures
• Ankle fractures
• SCFE
Unique Pediatric Traits

• Salter-Harris classification system
 – They involve the physis and occur in about 15% of long bone fractures

• Only 2% of physeal fractures result in significant functional disturbances

• Labelled 1 thru 5
Salter-Harris Classification

- **Salter-Harris 1 injuries**
 - Occur completely thru the physis
 - May or may not be displaced depending on energy
 - Tend to heal quite readily
Salter-Harris Classification

- **Salter-Harris 2 injuries**
 - Occurs across the physis with exit thru the metaphysis
 - May or may not be displaced depending on energy
 - Very common version of S-H fractures
 - Tend to heal quite readily
Salter-Harris Classification

• **Salter-Harris 3 injuries**
 - Occurs across the physis with exit through the epiphysis
 - May or may not be displaced depending on energy
 - Outcomes vary with joint reduction
Salter-Harris Classification

• Salter-Harris 4 injuries
 – Crosses the metaphysis & epiphysis
 – Through the physeal plate and intra-articular
 – Least common
 – Results depend on joint reduction
Salter-Harris Classification

• Salter-Harris 5 injuries
 Through the physeal plate
 – Difficult to diagnose
 – Usually discovered retroactively
 – Premature physeal closure can be seen
Salter-Harris Classification

- Salter-Harris injuries: SALTR
 - Type 1=S: slipped
 - Type 2=A: above
 - Type 3=L: lower
 - Type 4=T: through (everything)
 - Type 5=R: rammed
Wrist & Forearm Fractures

- Torus fractures
 - A bend is produced on one side
Wrist & Forearm Fractures

- Torus fractures
 - Typically from a fall; pediatric bones (thicker periosteum) allows this to occur
 - Heals in a cast, 3-6 weeks
 - When the cast is removed, the wrist stiffness will go away in 10-14d
 - PT is not needed
 - Parents are urged to avoid playground structures for 3-4 weeks after
Wrist & Forearm Fractures

- Greenstick fractures
 - An incomplete fracture pattern
Wrist & Forearm Fractures

- Greenstick fractures
 - Reductions are sometimes required
 - Treatment is similar to torus fractures
 - Again PT is not needed
 - Keeping children away from playground structures is like keeping Baloo the bear away from honey!
Wrist & Forearm Fractures

- Galeazzi fractures
 - A fracture-dislocation pattern of isolated distal 1/3 radius fracture with distal radio-ulnar joint (DRUJ) disruption
Wrist & Forearm Fractures

• **Galeazzi fractures**
 – This injury disrupts the forearm axis
 – It is known as a “fracture of necessity”
 – It is thought to be caused by a fall on a hyperpronated forearm
 – The overpull of the brachioradialis & pronator quadratus are the deforming forces…92% malunion rates are expected
 – Requires surgical intervention
Wrist & Forearm Fractures

• Monteggia fractures
 – A fracture-dislocation pattern of the proximal ulnar shaft & radial head dislocation
Wrist & Forearm Fractures

• Monteggia fractures
 – For diagnosis, it’s important to obtain quality elbow films
 – Remember that the radial head appearance is age-dependant
 – Reduction is critical
 – Surgery is usually necessary
Elbow Fractures

• Supracondylar elbow fractures
 – These fractures occur through the thin part of distal humerus (through the olecranon fossa) & above the physis
 – Makes up 41% of all pediatrics elbow fractures
Elbow Fractures

• Supracondylar elbow fractures
 – Peak age 4-6
 – These are falls on a hyperextended elbow
 – It is important to check a neuro exam & radial pulse
 – Splint the injury as is
 – Referral to ortho for follow up
Elbow Fractures

• Type I SCH fractures
Elbow Fractures

- Type II SCH fractures
Elbow Fractures

• Type III SCH fractures
Elbow Fractures

- Medial epicondyle fractures
 - The injury mechanism is typically a large valgus stress
 - About ½ are associated with posterior elbow dislocation
 - 14% of all peds elbow fractures
Elbow Fractures

• Medial epicondyle fractures
 – Peak age 9-14
 – Non-operative results are good
 – Even displaced fractures heal with fibrous union & good outcomes
 – Surgery is reserved for >5mm displacement, ulnar nerve deficit, or when the fragment becomes trapped intra-articularly
Elbow Fractures

- Lateral condyle fractures
 - Highly missed diagnosis
 - Remember, these generally represent a S-H 4 fracture pattern
 - Use 4V elbow radiographs (important to check the obliques)
 - 17% of all peds elbow fractures
Elbow Fractures

- Lateral condyle fractures
 - Peak age 4-9
 - 2mm displacement requires ORIF
 - There is an increased risk for lateral overgrowth
 - Growth arrest
 - Cubitus varus deformity or tardy ulnar nerve palsy (late)
Ankle Fractures

• Ankle fractures
 – Peak age 8+
 – Treatment doesn’t differ from adult fractures for mortise alignment & displacement in non-physeal injuries
 – Mechanism is typically axial loading or rotation about a fixed foot

• SH 1 & 2
 – Very rarely serious
 – Cast treatment
Ankle Fractures

• SH 3: Tillaux fracture
 – Represents an anterior tibiofibular avulsion
 – Higher risk for growth plate disturbance
 – Requires an anatomic reduction
 – K wire or screw fixation
Ankle Fractures

• SH 4: Triplane fracture
 – Higher energy torsional fracture
 – Higher risk for growth plate disturbance
 – Requires an anatomic reduction
 – K wire or screw fixation
Slipped Capital Femoral Epiphysis

- SCFE
 - Peak age 11-15
 - Approx 1-10,000 live births
 - A unique disorder to adolescent hips, most often developing during periods of accelerated growth, shortly after puberty
 - Fractures occur through the hypertrophic zone of the physis
Slipped Capital Femoral Epiphysis

- SCFE
 - Slips are acute or subacute (stable or unstable)
 - 20+% are missed at the first presentation to a medical facility
 - Good long term outcomes if caught early
 - At least 1 in 5 are eventually bilateral
Slipped Capital Femoral Epiphysis

• Other risk factors
 – Endocrine disorders (inc Type I Diabetes)
 – Renal disease
 – Cancer treatments
 – Corticosteroid use

• Diagnosis
 – 2-3x more common in high BMI males
 – Pain in the hip or knee
 – Waddling gait
 – Restricted IR on exam
Slipped Capital Femoral Epiphysis

• Diagnosis via radiographs
 – Klein’s line noted on the frog leg lateral view

• Repair with single screw fixation
 – Crutch walking
 – Sports restrictions
 – Close radiographic follow-up for 3-4 mos until physeal closure
Case Study

• C.H., a 12 y/o M.S. boy
 – Limping
 – Diagnosis via radiographs
 – Urgent screw fixation, 2003
 – C.H.’s gym teacher required a note
 – Healing & eventual opposite hip ORIF 2005

• Local High School
 – 6’3” 284lb offensive lineman, sev state championships & second team all-state
 – state wrestling runner-up, heavyweight
Case Study

• HWR
• UW-
 – 270lb OLB, played in the Rose Bowl
 – Engineering, post-grad honors
 – Lost 60lbs
 – Married
Conclusion

• Remember SALTR
 – Five types of Salter-Harris fractures

• Torus & greenstick wrist fractures
 – Unique to peds
 – Heal similarly

• Galeazzi & Monteggia
 – Require urgent ortho referral

• SCH elbow fractures
 – Type I-III
 – Usually splint as is and consult ortho
Conclusion

• **Medial epicondyle fractures**
 – Are elbow dislocation variants
 – Check the ulnar nerve

• **Lateral condyle fractures**
 – Can be missed easily
 – Often described on the phone to me as “something just not right”

• **Ankle Fractures**
 – SH 1&2 are low energy & stable
 – Special consideration for SH 3&4
Conclusion

- SCFE
 - Higher BMI males with insidious onset hip pain
 - Waddling limp
 - May present as knee pain
 - Good results are expected with early diagnosis & treatment